Introduction

Comfortable indoor environment is a major goal in the design of buildings, and achieving this may be challenging in cold climate where several factors should be considered simultaneously. The ultimate goal of the course is to bridge gap between architecture and engineering, towards achieving more sustainable environment. The course addresses design of buildings for cold climate to provide comfortable and productive environment while reducing the negative environmental effects at the global level by reducing demands for fossil fuels.

Course outcomes

By the end of this course, students will be able to:

1. Apply the basic principles of heat transfer mechanism and to perform simple heat loss/gain calculations.
2. Evaluate design decisions on heat loss/gain through envelope.
3. Apply basic passive design strategies to reduce operational energy requirements of the building.
4. Design mechanical control systems using approximate methods for sizing of ducts and other components.
5. Organize major mechanical system components in relation to other systems, including structure, enclosure, lighting, and fire safety.
6. Apply the principles of ventilation in cold climates (including natural ventilation, heat recovery, etc.).
7. Demonstrate awareness of issues related to energy efficiency and renewable energy applications for cold climate buildings.
8. Develop architectural designs that integrate mechanical systems together with other building systems (e.g. building envelop, lighting, structures).

Teaching Approach

The course will be presented in lecture and workshop mode. The course is connected with the comprehensive studio through the required development of building system concepts. Typical approaches to systems design will be reviewed in terms of air distribution approach and spatial organization. The assignment is conceptual design of a ventilation and thermal control system for the studio project, using rules of thumb for sizing.

Content: Topic Areas & Detailed Class Schedule

The course will introduce the overall concept of environmental control systems. This includes passive and active strategies to reduce heating and cooling loads of the buildings. The functions and characteristics of thermal and ventilation systems will be reviewed, together with their place in the development of design concepts. Components and terminology will be discussed, as well as quantitative design methods and elementary sizing procedures. Factors in systems selection will be examined, including:

1. Thermal comfort and air quality.
2. Types of ventilation and thermal control systems.
3. Performance criteria for the evaluation of systems, (e.g., system capabilities, cost, energy efficiency, energy codes).
5. Interrelationship of systems (e.g., envelope and active thermal control).
7. Other issues such as noise considerations and mechanical movement systems.

<table>
<thead>
<tr>
<th>W1</th>
<th>L1</th>
<th>Thermal comfort, impact of building design Heat transfer and heating and cooling loads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td>L3</td>
<td>Heating and cooling loads (ctd) - simple calculation methods; Introducing the term Project; Introduction to passive design (heating, cooling, daylighting and ventilation); passive heating.</td>
</tr>
<tr>
<td></td>
<td>L4</td>
<td></td>
</tr>
<tr>
<td>W3</td>
<td>L5</td>
<td>Passive design (ctd) Natural ventilation, Indoor air quality.</td>
</tr>
<tr>
<td></td>
<td>L6</td>
<td></td>
</tr>
<tr>
<td>W4</td>
<td></td>
<td>Students' presentation: Passive design implementation in the Term project.</td>
</tr>
<tr>
<td>W5</td>
<td>L7</td>
<td>Mid term exam (Feb 11th) HVAC for small buildings (residential and commercial)</td>
</tr>
<tr>
<td>W7</td>
<td>L8</td>
<td>HVAC for small buildings (ctd). HVAC for Large buildings; Generic HVAC Systems (Air to air, air to water and all- water); (Guest speaker TBD)</td>
</tr>
<tr>
<td></td>
<td>L9</td>
<td></td>
</tr>
<tr>
<td>W8</td>
<td>L10</td>
<td>HVAC for large buildings (ctd) Rules of thumb for sizing HVAC equipment; Distribution, project tutorial</td>
</tr>
<tr>
<td></td>
<td>L11</td>
<td></td>
</tr>
<tr>
<td>W10</td>
<td>L12</td>
<td>Distribution systems (ctd) (Type of distribution, delivery systems, etc.). Air ducts and approximate sizing of ducts- in class exercises (KSG).</td>
</tr>
<tr>
<td></td>
<td>L13</td>
<td></td>
</tr>
<tr>
<td>W11</td>
<td></td>
<td>Critics Final exam March Time TBD</td>
</tr>
<tr>
<td>W12</td>
<td></td>
<td>Critics</td>
</tr>
<tr>
<td>W13</td>
<td>M Apr 1</td>
<td>M Apr 8</td>
</tr>
<tr>
<td></td>
<td>W Apr 3</td>
<td>W Apr 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critics Project submission Time TBD</td>
</tr>
<tr>
<td>W14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment

Evaluation will be based on:
Passive design presentation 10%
Mid-term exam 15%
Final exam 25%
Design Project 50%
Total 100%

- Passive design presentation will focus on the passive design strategies included in the conceptual design of the buildings to reduce its heating and cooling load (including building shape, orientation, preliminary selection of materials, window size, etc.) (Outcomes 1, 2 and 3). 3% (from analyze and evaluate) depends on evaluating other students (2%) and getting evaluations from others (1%).
- Mid term exam will be based on material covered in week 1-4 (outcomes 1, 2, 3, 4)
- Final exam will cover all semester material (Outcomes 1-7)
- Design project (Outcomes1-8)

Note: The exams will be closed book. Writing and the grading thereof is a factor in the evaluation of the project.
Assessment blueprint

<table>
<thead>
<tr>
<th>Assessment Item</th>
<th>% of course grade</th>
<th>Level of understanding</th>
<th>Knowledge</th>
<th>Comprehension</th>
<th>Apply</th>
<th>Analyze</th>
<th>Evaluate</th>
<th>Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral presentation</td>
<td>10</td>
<td>20%</td>
<td>40%</td>
<td>20%</td>
<td>10%</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid term</td>
<td>15</td>
<td>30%</td>
<td>30%</td>
<td>20%</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral presentation</td>
<td>5</td>
<td>10%</td>
<td>40%</td>
<td>30%</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>20</td>
<td>30%</td>
<td>30%</td>
<td>20%</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term project</td>
<td>50</td>
<td>10%</td>
<td>10%</td>
<td>20%</td>
<td>20%</td>
<td>40%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course alignment

Below is an illustration of the alignment of course outcomes with the course assessment.

![Course alignment diagram](image)

Grading

Final grades will be reported as letter grades, with the final grade calculated according to the 4-point range. Grading will be based on the following scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Point Value</th>
<th>4-Point Range</th>
<th>Percent</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.00</td>
<td>4.00</td>
<td>95-100</td>
<td>Outstanding - evaluated by instructor</td>
</tr>
<tr>
<td>Grade</td>
<td>Range</td>
<td>Percentage</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4.00</td>
<td>90-94.99</td>
<td>Excellent - superior performance showing comprehensive understanding of the subject matter</td>
<td></td>
</tr>
<tr>
<td>A-</td>
<td>3.70</td>
<td>85-89.99</td>
<td>Very good performance</td>
<td></td>
</tr>
<tr>
<td>B+</td>
<td>3.30</td>
<td>80-84.99</td>
<td>Good performance</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3.00</td>
<td>75-79.99</td>
<td>Satisfactory performance</td>
<td></td>
</tr>
<tr>
<td>B-</td>
<td>2.70</td>
<td>70-74.99</td>
<td>Minimum pass for students in the Faculty of Graduate Studies</td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>2.30</td>
<td>65-69.99</td>
<td>All final grades below B- are indicative of failure at the graduate level and cannot be counted toward Faculty of Graduate Studies course requirements.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.00</td>
<td>60-64.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>1.70</td>
<td>55-59.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D+</td>
<td>1.30</td>
<td>50-54.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.00</td>
<td>45-49.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td>0-44.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
A student who receives a "C+" or lower in any one course will be required to withdraw regardless of their grade point average (GPA) unless the program recommends otherwise. If the program permits the student to retake a failed course, the second grade will replace the initial grade in the calculation of the GPA, and both grades will appear on the transcript.

Readings
The course texts are
- Additional materials will be posted on the course website.

Canadian Architectural Certification Board - Performance Criteria Met by Course
The following CACB Student Performance Criteria will be covered in this course at a primary level: B8 Environmental Systems, C2 Building Systems Integration, B10 Building Service Systems
The following CACB Student Performance Criteria will be covered in this course at a secondary level: B4 Sustainable Design, C1 Detailed Design Development, C4 Comprehensive Design.

University of Calgary Policies and Supports

ACADEMIC ACCOMMODATION
Students seeking an accommodation based on disability or medical concerns should contact Student Accessibility Services; SAS will process the request and issue letters of accommodation to instructors. For additional information on support services and accommodations for students with disabilities, visit www.ucalgary.ca/access/. Students who require an accommodation in relation to their coursework based on a protected ground other than disability should communicate this need in writing to their Instructor. The full policy on Student Accommodations is available at http://www.ucalgary.ca/policies/files/policies/student-accommodation-policy.pdf.
ACADEMIC MISCONDUCT

Plagiarism involves submitting or presenting work in a course as if it were the student’s own work done expressly for that particular course when, in fact, it is not. Most commonly plagiarism exists when: (a) the work submitted or presented was done, in whole or in part, by an individual other than the one submitting or presenting the work, (b) parts of the work are taken from another source without reference to the original author, (c) the whole work (e.g., an essay) is copied from another source, and/or, (d) a student submits or presents work in one course which has also been submitted in another course (although it may be completely original with that student) without the knowledge of or prior agreement of the instructor involved. While it is recognized that scholarly work often involves reference to the ideas, data and conclusions of other scholars, intellectual honesty requires that such references be explicitly and clearly noted. Plagiarism is an extremely serious academic offence. Any suspicion of plagiarism will be reported to the Dean, and dealt with as per the regulations in the University of Calgary Graduate Calendar. For information on academic misconduct and its consequences, please see the University of Calgary Calendar at http://www.ucalgary.ca/pubs/calendar/current/k.html

COPYRIGHT LEGISLATION:

All students are required to read the University of Calgary policy on Acceptable Use of Material Protected by Copyright (www.ucalgary.ca/policies/files/policies/acceptable-use-of-material-protected-by-copyright.pdf) and requirements of the copyright act (https://laws-lois.justice.gc.ca/eng/acts/C-42/index.html) to ensure they are aware of the consequences of unauthorised sharing of course materials (including instructor notes, electronic versions of textbooks etc.). Students who use material protected by copyright in violation of this policy may be disciplined under the Non-Academic Misconduct Policy.

FREEDOM OF INFORMATION AND PROTECTION OF PRIVACY

Student information will be collected in accordance with typical (or usual) classroom practice. Students’ assignments will be accessible only by the authorized course faculty. Private information related to the individual student is treated with the utmost regard by the faculty at the University of Calgary.

UNIVERSITY STUDENT APPEALS OFFICE: If a student has a concern about the course, academic matter, or a grade that they have been assigned, they must first communicate this concern with the instructor. If the concern cannot be resolved with the instructor, the student can proceed with an academic appeal, which normally begins with the Faculty. https://ucalgary.ca/student-appeals/

More student support and resources (e.g. safety and wellness) can be found here: https://www.ucalgary.ca/registrar/registration/course-outlines